
Computers & Geosciences 28 (2002) 21–31

A visualbasic program for histogram and variogram scalingq

Bora Oza,*, Clayton V. Deutscha, Peter Frykmanb

aDepartment of Civil and Environmental Engineering, University of Alberta, 220 Civil/Electrical Engineering Bldg., Edmonton, Alberta,

Canada T6G 2G7
bGeological Survey of Denmark and Greenland (GEUS) Thoravej 8, DK-2400 Copenhagen NV, Denmark

Received 16 January 2000; received in revised form 20 June 2000; accepted 25 June 2000

Abstract

The VarScale program (1) calculates dispersion variances for different support volumes, (2) performs variogram and
histogram scaling, and (3) performs scaling of a linear model of coregionalization (LMC). The input variogram may be
at any scale. The required dispersion variances (or average variogram values) are calculated. User input is automatically

passed between different components of the program. This paper describes the theoretical background of the scaling
algorithms, the program structure of VarScale and presents three examples. Variogram scaling from core scale to well-
log scale is illustrated with data from a Danish North Sea reservoir. Histogram and LMC scaling are illustrated with

data from a West Texas reservoir using porosity and seismic data. # 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Geostatistics; Affine correction; Indirect lognormal correction; Average variogram; Dispersion variance; Upscaling

1. Introduction

Scaling is important for petroleum, mining, environ-
mental and other fields of spatial modeling. Predictions
based on geostatistical models mistakenly using point

scale statistics may be misleading and can drastically
affect the recovery estimates of a petroleum reservoir
(Almeida and Frykman, 1994; Saad et al., 1995). In

environmental applications, the assessment of pollutant
concentration varies with the volume of the sample
considered. Measured data often have different volume

scale than the volume of the grid cells of our model. We
know that variability decreases as the volume increases.
This must be accounted for in the histogram and

variogram of geostatistical modeling.
VarScale uses conventional volume-variance scaling

relationships (Journel and Huijbregts, 1978; Kupfers-

berger et al., 1998). For histogram correction, there are

several procedures to correct to a different volume scale
or support. The procedures differ in the way that they
implicitly handle the degree of symmetrization. The
choice of a particular method depends largely on the

degreee of symmetrization we expect. The VarScale

program utilizes the affine correction and the indirect
lognormal correction to scale distributions. The affine

correction assumes no symmetrization whereas the
indirect lognormal assumes a moderate amount.
There are many applications where estimates can be

improved if the correlation between different variables is
included. For each new variable included, one needs its
variogram (auto-variogram) and cross-variogram mod-

els between it and all other variables. The linear model
of coregionalization (LMC) provides a method for
modeling the auto and cross-variograms of two or more
variables so that the variance of any possible linear

combination of these variables is always positive. Most
geostatistical modeling applications, such as cokriging,
can use data at different scales; however, this flexibility

requires a linear model of coregionalization at the
smallest data scale. Yet, different data sources are often
at different volumetric scales, for example, porosity from
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well logs and seismic values at a significantly larger
scale. VarScale will perform the necessary scaling of the

variogram of the primary and secondary variables and
the cross-variogram to the modeling scale.
This paper presents VarScale, which permits histo-

gram, variogram and linear model of coregionalization
scaling. The input variogram model may be at any scale
(different than the point support); then, VarScale, first
scales down to point scale and then goes from point

scale to the intended scale. It calculates dispersion
variances for different support volumes. Various other
features of VarScale will be stated in the following

sections. In the Theory section, detail of the histogram
correction methods and the variogram scaling technique
will be discussed. Furthermore, inference of licit small-

scale model of coregionalization with a combination of
small-scale primary data and large-scale secondary data,
will be covered in Section 2. Section 3 part explains how

all these scaling operations along with the calculation of
dispersion variance are handled by VarScale. The
application of VarScale will be demonstrated using
data from a West Texas reservoir and a Danish chalk

reservoir. Core porosity data from a West Texas
reservoir will be used for histogram scaling and coupling
of the core porosity with seismic data from the same

reservoir will be used for getting licit small-scale
coregionalization model. Core and log data, from a
Danish reservoir, will be used to show how the

variogram model obtained at core scale can be scaled
to obtain the appropriate variogram model at log scale.

2. Theory

2.1. Histogram scaling

The histogram of available sample data must be
scaled to represent the volume support of the grid cells
we intend to work on. This correction is made based on

assumptions about how the histogram changes as
volume support changes. There are various procedures
for distribution correction; however, they have two
common features:

* They leave the mean of the distribution unchanged,
and

* They adjust the variance by a variance reduction

factor, f ; which comes from the variogram.

If extreme values are poorly connected, then we
should choose a procedure that implicitly increases the

symmetry of the distribution, if the extreme values are
well connected, then we might prefer a procedure that
does not implicitly increase the symmetry of the

distribution as the support increases (Isaaks and
Srivastava, 1989).

VarScale considers two techniques of the support
effect correction. The affine correction leaves the shape

unchanged which is appropriate for ‘‘good’’ connectivity
of extremes. The indirect lognormal correction assumes
an intermediate amount of symmetrization, applicable

to more ‘‘disseminated’’ cases. The discrete Gaussian
model is not included in this version. In VarScale, users
have the flexibility of specifying the variance reduction
factor f directly or the program will calculate it from the

variogram model (see later).

2.2. Affine correction

The basic idea behind the affine correction is to move
all values closer to the mean by a specified factor. The
affine correction transforms a quantile (or a value) q of
the distribution to another quantile, q0 of the variance-
reduced distribution using the following linear formula:

q0 ¼
ffiffiffi
f

p
ðq�mÞ þm: ð1Þ

The mean of both distributions is m, the variance of the

original distribution is s2; and the variance of the
transformed distribution will be f � s2:
By using the linear equation for transformation, the

affine correction preserves the shape of the original
distribution.
The main advantage of the affine correction is its

simplicity. However, it produces minimum and max-
imum values that may not be realistic. If the variance
reduction factor is not too small (greater than 0.7), then
the affine correction procedure is often adequate.

2.3. Indirect lognormal correction

Whereas distributions may differ from the lognormal

distribution, change of support may affect them in a
manner similar to that described by two lognormal
distributions with the same mean but different variances.
The q–q curve that transforms the values of one

lognormal distribution to another with the same mean
but a different variance has an exponential form:

q0 ¼ aqb: ð2Þ

The coefficient, a; and the exponent, b; are given by the
following equations:

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð fCV2 þ 1Þ
lnðCV2 þ 1Þ

s
; ð3Þ

a ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fCV2 þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2 þ 1

p

m

 !b

: ð4Þ

In these formulas, CV is the coefficient of variation
obtained by dividing standard deviation s by the mean
m: The problem with the direct application of Eq. (2) is
that it does not preserve the mean if it is applied to

B. Oz et al. / Computers & Geosciences 28 (2002) 21–3122



values that are not exactly lognormally distributed. The
indirect lognormal correction, for that reason, rescales

all of the values from the transformation given in Eq. (2)
so that their mean is m:

q00 ¼ m

m0 q
0; ð5Þ

where m0 is the mean of the distribution after it has been
transformed by Eq. (2). This procedure requires two
steps; first the values are transformed according to
Eq. (2) and then, they are rescaled to the correct mean.
There are two important differences between the

results of the indirect lognormal correction and the
affine correction: the skewness decreases as the variance
is reduced and the minimum stays at 0. It is preferable to

use the indirect lognormal correction if the preservation
of shape implicit in the affine correction is unrealistic.

2.4. Variogram scaling and dispersion variance

The variogram model is associated to the volume
support of the data. It is then necessary to scale the
variogram to represent the volume that we are interested

in.
Consider a variogram model at arbitrary scale v;

where v often represents the small core scale:

gvðhÞ ¼ C0
v þ

Xnst
i¼1

Ci
vG

i
vðhÞ; ð6Þ

where gvðhÞ is the variogram model at the v scale, C0
v is

the nugget effect, nst is the number of nested variogram

structures used to fit the variogram, Ci
v is the variance

contribution of each nested structure, i ¼ 1; . . . ; nst; and
Gi
vðhÞ are nested structures consisting of analytical

functions. Here the ‘‘sill’’ of each nested structure Gi
v �

ðhÞ is unity, the Ci
v terms describe the variance

contributions of each nested structure. The sum of the
variance contributions is the variance at the v-scale and

is a dispersion variance:

D2ðv;AÞ ¼ C0
v þ

Xnst
i¼1

Ci
v; ð7Þ

where D2ðv;AÞ is the variance of volumes of size v in the
entire area of interest A: The variance decreases as the
volume increases. That is because high or low values are
averaged out as the volume of investigation increases.

The following scaling relations are estabilished in
geostatistics assuming that the actual shape of the
variogram does not change (Journel and Huijbregts,

1978):

* The range at a large volume V ; increases in volume
size by

aV ¼ av þ ðjV j � jvjÞ; ð8Þ

where j 
 j denotes the size of the volume in a specific
direction. If V and v are the same size in one

particular direction (say, horizontally), then the
range does not change.

* Assuming the variogram shape does not change, we
must only quantify how the variance contributions
Ci

v; i ¼ 1; . . . ; nst; change. The nugget effect is due to
the random variation, and it decreases with an
inverse relationship of the volume, i.e.,

C0
V ¼ C0

v

jvj
jV j; ð9Þ

where jvj; jVj represent the volume of each scale,

respectively. The nugget effect of ‘‘point’’ scale values
is undefined. The nugget effect for any ‘‘finite’’ scale
may be calculated by Eq. (9).

* The variance contribution of each nested structure
changes as following:

Ci
V ¼ Ci

v

1� �GGðV ;VÞ
1� �GGðv; vÞ

; ð10Þ

where �GGðV;VÞ and �GGðv; vÞ are the average variogram
or ‘‘gamma-bar’’ values. Notice here the change in
the variance contribution is calculated separately for
each nested structure. The ‘‘gamma-bar’’ values are

thus calculated based on the variogram of each
nested structure (see below).

* When all variance contributions have been corrected

for each nested structure, the sum of the coefficients
Ci
V ; i ¼ 0; 1; . . . ; nst give the dispersion variance

implicit to the corrected variogram model.

In order to use the equations to correct the variogram
models, it is necessary to have ‘‘gamma-bar’’ values. The
‘‘gamma-bar’’ value represents the mean value of GðhÞ
or gðhÞ when one extremity of the vector h describes the
domain vðuÞ and the other extremity independently
describes the same domain vðuÞ: In mathematical

notation the ‘‘gamma-bar’’ value is expressed as

gðvðuÞ; vðuÞÞ ¼ 1

vv

Z
vðuÞ

Z
vðuÞ

gð y� y0Þ dy dy0: ð11Þ

Although there exist certain analytical solutions (David,
1977; Journel and Huijbregts, 1978) to gðvðuÞ; vðuÞÞ; the
value of ‘‘gamma-bar’’ is usually estimated numerically

by discretizing the volume vðuÞ and vðuÞ into a number
of points and simply averaging the variogram values

gðvðuÞ; vðuÞÞ � 1

nn0

Xn
i¼1

Xn0
j¼1

gðui � u0jÞ; ð12Þ

where n is the number of regular spacing points
discretized for volume vðuÞ and n0 is the number of
regular spacing points discretized for volume vðuÞ: Each
point represents the same fractional volume of vðuÞ:
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2.5. Estimation of variance reduction factor

The variance reduction factor is the ratio of the block
variance to the point variance

f ¼ D2ðV ;AÞ
s2

: ð13Þ

The block variance is given by

D2ðV;AÞ ¼ s2 �D2ð
;VÞ: ð14Þ

Inserting Eq. (14) into Eq. (13):

f ¼ s2 �D2ð
;VÞ
s2

: ð15Þ

Then by simplification, we get the variance reduction

factor as

f ¼ 1�D2ð
;VÞ
s2

: ð16Þ

The important task is to calculate D2ð
;VÞ: The average
variogram value, ‘‘gamma-bar’’, introduced in the

previous section may be used. The dispersion variance
of point values within any volume V is equal to the
variogram model averaged over all possible vectors

contained within that volume

D2ð
;VÞ ¼ gðV ;VÞ � gð
; 
Þ ¼ gðV;VÞ; ð17Þ

where gð
; 
Þ ¼ 0; since the mean variogram value at

point scale is 0. This is demonstrated in a Journel and
Huijbregts (1978).

2.6. Inference of small-scale LMC model

The linear model of coregionalization (LMC) (Goo-

vaerts, 1997; Journel and Huijbregts, 1978) provides a
method for modeling the auto- and cross-variograms of
two or more variables so that the variance of any

possible linear combination of these variables is always
positive. Each variable is characterized by its own
autovariogram and each pair of variables by their own

cross-variogram. For a positive definite LMC, the auto-
and cross-variogram models of Z and Y variables must
be constructed using the same basic variogram models
as follows:

gZðhÞ ¼C0
Z þ C1

ZG
1ðhÞ þ C2

ZG
2ðhÞ þ C3

ZG
3ðhÞ . . . ;

gY ðhÞ ¼C0
Y þ C1

YG
1ðhÞ þ C2

YG
2ðhÞ þ C3

YG
3ðhÞ . . . ;

gZY ðhÞ ¼C0
ZY þ C1

ZYG
1ðhÞ þ C2

ZYG
2ðhÞ þ C3

ZYG
3ðhÞ . . . ;

ð18Þ
where the GðhÞ terms are common variogram models of
specified type (spherical, exponential, Gaussian, etc.),

range and anisotropy. Only the sill C parameters are
allowed to differ between the three variogram models.

The C values must also satisfy the following
constraints:

Ci
Z > 0 8i;

Ci
Y > 0 8i;

Ci
ZC

i
Y > Ci

ZYC
i
ZY 8i: ð19Þ

In the context of variogram scaling, we have the basic
structures of the small-scale variogram model, gZðhÞ (i.e.
variogram model for the primary variable), then, the
next step is to ‘‘downscale’’ the large V scale secondary
(Y) variogram, gY ðhÞ (i.e. variogram model for the

secondary variable) and the large V scale cross-
variogram, gZY ðhÞ to small, v, scale that ensures the
positive definiteness constraint of the linear model of
coregionalization given by Eq. (19). Eqs. (8), (9) and (10)

are used for this purpose, by rearranging them in terms
of small v scale. Once a small-scale LMC model has been
established, the spatial averages of the variogram are

used in the cokriging equations.
In the petroleum context of primary data with

excellent vertical resolution and secondary data with

little vertical resolution, there are some basic assump-
tions;

1. The shape of the cross-variogram is the same as the
shape of the auto variogram at v scale. This is
reasonable, since the shape of the auto variogram is

certainly related to the cross variogram.
2. The same type of basic covariance structure that is

used to model the large-scale data is also appropriate
at the small scale.

3. Given 2-D horizontal seismic data a vertical range
can obviously not be determined. In this situation, a
vertical range value for the seismic data must be

chosen to complete 3-D small-scale LMC model.
Frequently, in practice, this vertical range is taken
from the small-scale variogram model.

3. Program design

A flowchart of VarScale is presented in Fig. 1.
VarScale operates on Windows95=98=NT: From the

main window, which is given in Fig. 2A, user can access
the options of (1) histogram scaling, (2) LMC scaling (3)
variogram scaling, (4) g calculation, and (5) D2

calculation. According to the chosen option(s),

VarScale expects the user to input the necessary data
and parameters. In Fig. 2B–D, those windows are
presented to let the user input necessary data, para-

meters and commands that continuous VarScale: From
the main window, the user can input/browse the output
file for histogram and variogram scaling. The result of

the ‘‘average variogram’’ and ‘‘dispersion variance’’
values will be printed to the window and it is advisable
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that the user see these results before going to histogram

and variogram scaling.
Most calculations need the definition of block size and

discretization parameters except for the user-specified

variance reduction factor case; there is an option in the
Block size and Discretization window (Fig. 2B) that
allows the user to define f directly. VarScale asks for the

input data file and histogram correction method(s) (see
Fig. 2D) to accomplish the histogram scaling. The
output is in GeoEAS format preserving the original

data columns and adding the corrected column(s)

accordingly.
It is rare that we know the variance reduction factor, f,

directly for histogram scaling. Therefore, estimation of f

from the variogram model is conveninent and VarScale

does the necessary calculations. This calculation requires
estimation of g: As given in Eq. (12), g may be estimated
by discretizeting the volume and averaging the vario-
gram values. Since discretization may introduce numer-
ical errors (numerical integration errors), VarScale will

Fig. 1. Flowchart for VarScale.
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automatically choose a discretization level. From the
block size and discretization window, the user can
selecet either the automatic or manual discretization
option. If the manual option is selected, then the user

must specify the discretization. With the automatic
option, the number of discretization points will be
increased continuously until a stable g is obtained.

Discretization will be performed in direction(s) that data
and target scales differ.
Calculation of g requires a point scale variogram

model; however, VarScale gives the user the flexibility
of specifying the input variogram at any scale. If the
point-scale check box in the block size and discretization
window is not checked, then VarScale assumes that the

input variogram model is not a point-scale variogram
model; the input variogram model is first downscaled to
point scale and then upscaled to target scale. VarScale

directly scales the nugget effect because the nugget effect
at the point scale cannot be defined. If the input
variogram model is a point scale variogram, then scaling

to target scale will be performed directly.
The input file for histogram correction should be in

GeoEAS format. For the histogram scaling, VarScale

allows two methods; affine correction and indirect
lognormal correction. Both of them can be chosen, in
which case two columns will be added in the output file,
and the results can be compared.

The variogram model window (Fig. 2B) has different
options. The user can either input the variogram model
parameters directly, which are in GSLIB (Deutsch and

Journel, 1997) conventions, directly or load them from a
presaved file. The Variogram Types button is designed to
access for the Variogram Types window which includes

the corresponding variogram model types supported by
VarScale.
The linear model of coregionalization requires that

the nested structures (types, ranges), fitted to the small-

scale primary data, be kept for the small-scale v

variogram of the secondary and for the small-scale v

cross-variogram, only nugget and the sill components of

these variograms have to be determined by the analytical
model. Therefore, VarScale asks the user to input a
complete small-scale variogram model for primary data

(nugget effect, sill values, types and ranges), whereas,
only nugget effect and sill values are needed for the
large-scale variogram model of the secondary variable

Fig. 2. Program interface: (A) main window, (B) block size and discretization window, (C) variogram model window, (D) histogram

scaling window, and (E) LMC scaling window.
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and large-scale cross-variogram model between the
primary and secondary variable. LMC scaling window

of VarScale is given in Fig. 2E. Just like the option at
the variogram model window, the user can either input
the variogram model parameters for the primary

variable, which are in GSLIB (Deutsch and Journel,
1997) conventions, directly or load them from a
presaved file.
The types and ranges of small-scale, primary data,

variogram model will be used to calculate the average
variograms at small and large scales. The large-scale, V
and small-scale, v are specified in the block size and

discretization window. It is important to remember here
that, since we are downscaling to small scale v, in the
block size and discretization window, the small-scale v

should be input to the ‘‘target scale’’ section and the
large-scale V should be input to the ‘‘data scale’’ section
(i.e. just the reverse of the upscaling case). Once, average

variogram values for small and large scales have been
obtained, then, sill values for the small-scale v variogram
of the secondary variable Y and the small-scale v cross-
variogram between variables Z and Y will be calculated

using Eq. (10). The range and nugget effect values are
downscaled using the Eqs. (8) and (9), respectively. The
small-scale linear model of coregionalization will be

checked for positive definiteness by applying Eq. (19).
The result of this check is printed in the window. After
the small-scale linear model of coregionalization has

been obtained, then the results are printed to a file that
the user selects from the LMC scaling window. The
output format is suitable to be used by the other GSLIB
programs; such as cokb3d.

4. Example

4.1. Histogram scaling

Data from West Texas field was used. The dataset
consists of 3303 porosity data with a mean of 8.33 and
standard deviation of 3.37. Kupfersberger et al. (1998)

worked on this field and according to their result; 3-D
the normal score porosity variogram model has a zero
nugget effect and two nested structures: (1) an exponen-

tial structure with sill equal to 0.4 and the range of
values in x; y and z directions are 1000.0, 3000.0 and
12.0m, respectively, and (2) a spherical model with sill
equal to 0.6 and the range of values in x; y and z

directions are 25,000.0, 5000.0 and 50.0m, respectively.
Our aim is to adjust the original porosity data
distribution to reflect upscaling, when the original

vertical scale of 1m (core values averaged to 1m blocks)
is replaced with 10 and 30m. VarScale will calculate the
variance reduction factors for each upscaling from the

previous variogram model without assuming a point
variogram model. For simplicity, only the affine correc-

tion is applied to get the new scaled histograms. The
following steps are performed:

1. Go to the variogram model window by pressing the
variogram model button. The response of VarScale
and the complete input variogram model are shown

in Fig. 3.
2. Averaging is done in the vertical direction. The data

scale in the vertical direction is 1m and the target

vertical scales are 10 and 30m. Using the block size
and discretization window (by pressing the block size
and discretization button from the Main window),

data scale and target scale configurations are defined
(see Fig. 4). In Fig. 4, it is seen that the same values
are assigned to x and y data and target scale,
whereas, 1 and 10m are assigned to z direction of

data and target scale accordingly. This directes
VarScale to do only vertical averaging. Since the

Fig. 3. Variogram model window showing input variogram for

histogram scaling example.

Fig. 4. Block size and discretization window showing data and

target scale along with discretization option(s) for histogram

scaling example.

B. Oz et al. / Computers & Geosciences 28 (2002) 21–31 27



input variogram model is not a point scale vario-
gram, the point scale variogram option was not

selected. This will direct the VarScale to down scale
the input variogram from data scale to point scale
and then upscale from point scale to target scale.

3. In Fig. 5, the histogram scaling window is presented.
A data file was defined with the data column number
for the considered data. Since the variance reduction
factor will be calculated from the available variogram

model, the user defined variance reduction factor
option was not selected. For the histogram correction
method, the affine correction option was selected.

4. The final step is to select the histogram correction
option from the Main window (see Fig. 6). The result
of the scaled distribution will be printed to a file

called Wtexas.out, in GEOEAS format. The output
file is specified in the Main window.

Variance reduction factors of 0.72 and 0.50 were

obtained for the 10 and 30m scaling, respectively. The

results of the new corrected distributions are given in
Fig. 7 along with the original distribution. It is seen that

the shape of corrected distributions are similar to the
original one which is the typical result of affine
correction. On the other hand, it can be seen from

Fig. 7 that, the variances of the two corrected distribu-
tions are reduced by 0.72 and 0.50, respectively,
compared to the variance of the original distribution.
For example, for the 10m scale, dispersion variance is

equal to D2 ¼ s2 � 0:72 ¼ 8:18: It is important to point
out here that these two scaled histograms are ‘‘target
histograms’’ for simulation purposes.

4.2. Variogram scaling

The integration of different data sources simulta-

neously in the construction of high-resolution

Fig. 5. Histogram scaling window.

Fig. 6. Main window showing histogram scaling option and

output file specification.

Fig. 7. Original distribution along with two adjusted distribu-

tions for histogram scaling example.
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geostatistical models prompts researchers to work on
data of different scales. Core and well log measurements

are frequently used in constructing geostatistical models
of an oil field. The volume of core measurement is well
understood; however, the volume of well-log derived

porosity is less well understood.
An example application of VarScale is given for the

core and well-log derived porosity from a Danish chalk
reservoir. Details may be found in Frykman and

Deutsch (1999). Not only the existence of correlation
between core porosity and well log porosity, but also the
reliance of core volume measurement make it convenient

to predict the log-scale variogram from the core-scale
variogram. The practical importance of this prediction is
that once we have calibrated the log-scale variogram, we

can use it efficiently in modeling since log data are more
prevalent than core porosity measurements. The objec-
tive of this application is to show how to do this

prediction using VarScale.
In the aforementioned study, the authors derived a

variogram model from core porosity measurements. The
variogram model has no nugget effect and two nested

structures: (1) a spherical structure with sill equal to 2.82
and a range of 0.54m and (2) a hole-effect model with
amplitude 1.2 and peak at 0.95m. Core scale, which is

also the data scale, is 0:05 m� 0:02 m� 0:02 m and log
scale is 0.6m in a vertical direction.
The complete input variogram model is shown in

Fig. 8. Let us proceed step-by-step and see how to
estimate the log scale variogram from the core scale
variogram using VarScale:

1. Set the core and log scale in the block size and
discretization window. The user can access this

window by pressing the block size and discretization
button from the Main window. This window is given
in Fig. 9. Well data are only averaged in a vertical

(i.e. z) direction. From Fig. 9, this was accomplished
by assigning the same values to x and y directions

and different values to z direction of the data and
target scale boxes. Then, the automatic discretization

option will cause the discretization only in z
direction. Since the input variogram model is not a
point-scale variogram, the point-scale variogram

option was not selected.
2. After providing the needed data and parameters we

can direct VarScale to perform variogram scaling
along with the calculations of average variogram

and dispersion variance by checking the appro-
priate boxes and pressing the calculate button
(see Fig. 10). The result of the calculations for

average variogram and dispersion variance will be
printed to a window (see Fig. 11). The result of the
variogram scaling, which is log-scale variogram

Fig. 8. Variogram model window showing input variogram for

variogram scaling example.

Fig. 9. Block size and discretization window showing data and

target scale along with discretization option(s) for variogram

scaling example.

Fig. 10. Main window showing desired boxes checked to

accomplish variogram scaling and estimate average variogram

and dispersion variance.
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model for our example, will be printed to the file
called Danish.out (user can specify the output file for

variogram scaling from the Main window, see
Fig. 10).

The results of the disperson variance and the average
variogram for the log scale are 2.295 and 1.780,
respectively (see Fig. 11). The log-scale variogram

model has the range values of 1.12 for the spherical
and 0.95 for the hole-effect structure and corresponding
sill value for spherical structure is 1.439 and 0.855 for

the hole effect structure (Fig. 12). The core-scale
variogram and and the corresponding theoretically
derived log-scale variogram are presented in Fig. 13.

The reduction in sill value and increase in range value
are clear.

4.3. LMC scaling

The application of the linear model of coregionaliza-
tion scaling will be demonstrated with the West Texas
data. Seismic data will be used for secondary data along

with the primary data (porosity). Kupfersberger et al.
(1998) obtained the 3-D porosity normal-scores vario-
gram model, the variogram model for normal-score
seismic data and the cross variogram between vertically

averaged porosity and the seismic attribute (normal
score). In the histogram scaling section, previously, the
3-D porosity normal-scores variogram model was

presented. The fitted sill values for each variogram
component were given 0.29 and 0.71 for the large-scale
seismic normal-scores variogram and 0.11 and 0.52 for

the large-scale cross-variogram.
In the West Texas field, the large-scale V represents

55m in the vertical direction (average well length), and

the small-scale v represents 1m in the vertical direction.
Since LMC requires that types and ranges, fitted to the
small-scale primary data, be kept for the small-scale v

variogram of the seismic data and for the small-scale v

cross-variogram; thus, only the nugget effect and the sill
components of the seismic variogram and the cross-
variogram have to be determined. In order to get the

small-scale LMC via VarScale:

1. In the LMC scaling window, complete the input for
porosity (primary data) variogram model, sill values

for each nested structures of seismic (secondary data)
variogram model and cross-variogram model (be-
tween porosity and seismic), see Fig. 14. The output

file is defined in this window as LMC.out

Fig. 11. Output window with dispersion variance and average

variogram for variogram scaling example.

Fig. 12. Output result for variogram scaling (Danish.out).

Fig. 13. Core-scale variogram (upper curve) and theoretically

derived log-scale variogram (lower curve). As sample size

increases, sill reduces and range increases.

Fig. 14. LMC scaling window showing input variograms for

LMC scaling example.
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2. The data-scale, target-scale and the discretiza-

tion configurations are given in Fig. 15. The
automatic discretization option was selected. Our
aim is to downscale from large-scale 55m in the

vertical direction to small-scale 1m in the vertical
direction therefore, 55 and 1m are defined in the z
direction of data-scale and target-scale sections

accordingly.
3. From the Main window, selecting the LMC scaling

option and pressing the calculate button, will direct
VarScale to complete small-scale LMC. Before

printing to the output file, VarScale will inform the
user about the result of the positive definitness of
this small-scale LMC. For our example, small-

scale LMC is positive definite. The output file is
given in Fig. 16. The first small-scale variogram
model is for porosity, the second one is for seismic

and the final is for cross-variogram between porosity
and seismic.

5. Conclusion

Histogram and variogram scaling are important steps
in geostatistical calculations. Measured data often have
a different volume scale than the volume of the grid cells

of our model. We know that variability decreases as the
volume increases. This must be accounted for in the
histogram and variogram of geostatistical modeling. The
main purpose of VarScale is to provide a ‘‘user-

friendly’’ environment to take into account this well
known volume-variance relationship.
User input is automatically passed between the

different components of VarScale. The option of
‘‘non-point variogram’’ in VarScale allows input
variograms at any scale. The automatic discretization

option does the required numerical integration to arrive
at stable average variogram values. In addition to
scaling the variogram for a single variable, the LMC

scaling option of VarScale permits the inference of a
small-scale linear model of coregionalization. Then,
results can be used for cokriging. Calculations can be
repeated for different volumes easily for all options in

VarScale.

References

Almeida, A.S., Frykman, P., 1994. Geostatistical modeling of

chalk reservoir properties in the Dan field, Danish North

sea. In: Yarus, J.M., Chambers, R.L. (Eds), Stochastic

Modeling and Geostatistics: Principles, Methods and Case

Studies, American Association of Petroleum Geologists

Computer Applications in Geology, No. 3, pp. 273–286.

David, M., 1977. Geostatistical Ore Reserve Estimation.

Elsevier, Amsterdam, 364pp.

Deutsch, C.V., Journel, A.G., 1997. GSLIB: Geostatistical

Software Library and User’s Guide, 2nd edn., Oxford

University Press, New York, 369pp.

Frykman, P., Deutsch, C.V., 1999. Geostatistical scaling laws

applied to core and log data. SPE Annual Technical

Conference and Exhibition, SPE Paper Number 56822,

Houston, TX, pp. 887–898.

Goovaerts, P., 1997. Geostatistics for Natural Resources

Evaluation. Oxford University Press, New York, 483pp.

Isaaks, E.H., Srivastava, R.M., 1989. An Introduction to

Applied Geostatistics. Oxford University Press, New York,

561pp.

Journel, A.G., Huijbregts, C.J., 1978. Mining Geostatistics.

Academic Press, New York, 600pp.

Kupfersberger, H., Deutsch, C.V., Journel, A.G., 1998.

Deriving constraints on small-scale variograms due to

variograms of large-scale data. Mathematical Geology 30

(7), 837–851.

Saad, N., Cullick, A.S., Honarpour, M.M., 1995. Effective

relative permeability in scale-up and simulation. SPE Rocky

Mountain Regional/Low-Permeability Reservoirs Sympo-

sium, SPE Paper Number 29592, Denver, CO, pp. 451–464.

Fig. 15. Block size and discretization window for LMC scaling

example.

Fig. 16. Result of small-scale LMC.

B. Oz et al. / Computers & Geosciences 28 (2002) 21–31 31


